Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on June 1, 2010
READ PUBLICATION →

Virtual Screening with AutoDock: Theory and Practice.

Authors: Cosconati S, Forli S, Perryman AL, Harris R, Goodsell DS, Olson AJ

Abstract: IMPORTANCE TO THE FIELD: Virtual screening is a computer-based technique for identifying promising compounds to bind to a target molecule of known structure. Given the rapidly increasing number of protein and nucleic acid structures, virtual screening continues to grow as an effective method for the discovery of new inhibitors and drug molecules. AREAS COVERED IN THIS REVIEW: We describe virtual screening methods that are available in the AutoDock suite of programs, and several of our successes in using AutoDock virtual screening in pharmaceutical lead discovery. WHAT THE READER WILL GAIN: A general overview of the challenges of virtual screening is presented, along with the tools available in the AutoDock suite of programs for addressing these challenges. TAKE HOME MESSAGE: Virtual screening is an effective tool for the discovery of compounds for use as leads in drug discovery, and the free, open source program AutoDock is an effective tool for virtual screening.
Published on June 1, 2010
READ PUBLICATION →

Least-Squares Support Vector Machine Approach to Viral Replication Origin Prediction.

Authors: Cruz-Cano R, Chew DS, Kwok-Pui C, Ming-Ying L

Abstract: Replication of their DNA genomes is a central step in the reproduction of many viruses. Procedures to find replication origins, which are initiation sites of the DNA replication process, are therefore of great importance for controlling the growth and spread of such viruses. Existing computational methods for viral replication origin prediction have mostly been tested within the family of herpesviruses. This paper proposes a new approach by least-squares support vector machines (LS-SVMs) and tests its performance not only on the herpes family but also on a collection of caudoviruses coming from three viral families under the order of caudovirales. The LS-SVM approach provides sensitivities and positive predictive values superior or comparable to those given by the previous methods. When suitably combined with previous methods, the LS-SVM approach further improves the prediction accuracy for the herpesvirus replication origins. Furthermore, by recursive feature elimination, the LS-SVM has also helped find the most significant features of the data sets. The results suggest that the LS-SVMs will be a highly useful addition to the set of computational tools for viral replication origin prediction and illustrate the value of optimization-based computing techniques in biomedical applications.
Published in May 2010
READ PUBLICATION →

Systems approaches to polypharmacology and drug discovery.

Authors: Boran AD, Iyengar R

Abstract: Systems biology uses experimental and computational approaches to characterize large sample populations systematically, process large datasets, examine and analyze regulatory networks, and model reactions to determine how components are joined to form functional systems. Systems biology technologies, data and knowledge are particularly useful in understanding disease processes and drug actions. An important area of integration between systems biology and drug discovery is the concept of polypharmacology: the treatment of diseases by modulating more than one target. Polypharmacology for complex diseases is likely to involve multiple drugs acting on distinct targets that are part of a network regulating physiological responses. This review discusses the current state of the systems-level understanding of diseases and both the therapeutic and adverse mechanisms of drug actions. Drug-target networks can be used to identify multiple targets and to determine suitable combinations of drug targets or drugs. Thus, the discovery of new drug therapies for complex diseases may be greatly aided by systems biology.
Published in May 2010
READ PUBLICATION →

Pharmacokinetics of cefotaxime and desacetylcefotaxime in infants during extracorporeal membrane oxygenation.

Authors: Ahsman MJ, Wildschut ED, Tibboel D, Mathot RA

Abstract: Extracorporeal membrane oxygenation (ECMO) is used to temporarily sustain cardiac and respiratory function in critically ill infants but can cause pharmacokinetic changes necessitating dose modifications. Cefotaxime (CTX) is used to prevent and treat infections during ECMO, but the current dose regimen is based on pharmacokinetic data obtained for non-ECMO patients. The objective of this study was to validate the standard dose regimen of 50 mg/kg of body weight twice a day (postnatal age [PNA], <1 week), 50 mg/kg three times a day (PNA, 1 to 4 weeks), or 37.5 mg/kg four times a day (PNA, >4 weeks). We included 37 neonates on ECMO, with a median (range) PNA of 3.3 (0.67 to 199) days and a median (range) body weight of 3.5 (2.0 to 6.2) kg at the onset of ECMO. Median (range) ECMO duration was 108 (16 to 374) h. Plasma samples were taken during routine care, and pharmacokinetic analysis of CTX and its active metabolite, desacetylcefotaxime (DACT), was done using nonlinear mixed-effects modeling (NONMEM). A one-compartment pharmacokinetic model for CTX and DACT adequately described the data. During ECMO, CTX clearance (CL(CTX)) was 0.36 liter/h (range, 0.19 to 0.75 liter/h), the volume of distribution of CTX (V(CTX)) was 1.82 liters (0.73 to 3.02 liters), CL(DACT) was 1.46 liters/h (0.48 to 5.93 liters/h), and V(DACT) was 11.0 liters (2.32 to 28.0 liters). Elimination half-lives for CTX and DACT were 3.5 h (1.6 to 6.8 h) and 5.4 h (0.8 to 14 h). Peak CTX concentration was 98.0 mg/liter (33.2 to 286 mg/liter). DACT concentration varied between 0 and 38.2 mg/liter, with a median of 10 mg/liter in the first 12 h postdose. Overall, CTX concentrations were above the MIC of 8 mg/liter over the entire dose interval. Only 1 of the 37 patients had a sub-MIC concentration for over 50% of the dose interval. In conclusion, the standard cefotaxime dose regimen provides sufficiently long periods of supra-MIC concentrations to provide adequate treatment of infants on ECMO.
Published on May 20, 2010
READ PUBLICATION →

Deciphering diseases and biological targets for environmental chemicals using toxicogenomics networks.

Authors: Audouze K, Juncker AS, Roque FJ, Krysiak-Baltyn K, Weinhold N, Taboureau O, Jensen TS, Brunak S

Abstract: Exposure to environmental chemicals and drugs may have a negative effect on human health. A better understanding of the molecular mechanism of such compounds is needed to determine the risk. We present a high confidence human protein-protein association network built upon the integration of chemical toxicology and systems biology. This computational systems chemical biology model reveals uncharacterized connections between compounds and diseases, thus predicting which compounds may be risk factors for human health. Additionally, the network can be used to identify unexpected potential associations between chemicals and proteins. Examples are shown for chemicals associated with breast cancer, lung cancer and necrosis, and potential protein targets for di-ethylhexyl-phthalate, 2,3,7,8-tetrachlorodibenzo-p-dioxin, pirinixic acid and permethrine. The chemical-protein associations are supported through recent published studies, which illustrate the power of our approach that integrates toxicogenomics data with other data types.
Published on May 19, 2010
READ PUBLICATION →

Griseofulvin stabilizes microtubule dynamics, activates p53 and inhibits the proliferation of MCF-7 cells synergistically with vinblastine.

Authors: Rathinasamy K, Jindal B, Asthana J, Singh P, Balaji PV, Panda D

Abstract: BACKGROUND: Griseofulvin, an antifungal drug, has recently been shown to inhibit proliferation of various types of cancer cells and to inhibit tumor growth in athymic mice. Due to its low toxicity, griseofulvin has drawn considerable attention for its potential use in cancer chemotherapy. This work aims to understand how griseofulvin suppresses microtubule dynamics in living cells and sought to elucidate the antimitotic and antiproliferative action of the drug. METHODS: The effects of griseofulvin on the dynamics of individual microtubules in live MCF-7 cells were measured by confocal microscopy. Immunofluorescence microscopy, western blotting and flow cytometry were used to analyze the effects of griseofulvin on spindle microtubule organization, cell cycle progression and apoptosis. Further, interactions of purified tubulin with griseofulvin were studied in vitro by spectrophotometry and spectrofluorimetry. Docking analysis was performed using autodock4 and LigandFit module of Discovery Studio 2.1. RESULTS: Griseofulvin strongly suppressed the dynamic instability of individual microtubules in live MCF-7 cells by reducing the rate and extent of the growing and shortening phases. At or near half-maximal proliferation inhibitory concentration, griseofulvin dampened the dynamicity of microtubules in MCF-7 cells without significantly disrupting the microtubule network. Griseofulvin-induced mitotic arrest was associated with several mitotic abnormalities like misaligned chromosomes, multipolar spindles, misegregated chromosomes resulting in cells containing fragmented nuclei. These fragmented nuclei were found to contain increased concentration of p53. Using both computational and experimental approaches, we provided evidence suggesting that griseofulvin binds to tubulin in two different sites; one site overlaps with the paclitaxel binding site while the second site is located at the alphabeta intra-dimer interface. In combination studies, griseofulvin and vinblastine were found to exert synergistic effects against MCF-7 cell proliferation. CONCLUSIONS: The study provided evidence suggesting that griseofulvin shares its binding site in tubulin with paclitaxel and kinetically suppresses microtubule dynamics in a similar manner. The results revealed the antimitotic mechanism of action of griseofulvin and provided evidence suggesting that griseofulvin alone and/or in combination with vinblastine may have promising role in breast cancer chemotherapy.
Published on May 17, 2010
READ PUBLICATION →

Chem2Bio2RDF: a semantic framework for linking and data mining chemogenomic and systems chemical biology data.

Authors: Chen B, Dong X, Jiao D, Wang H, Zhu Q, Ding Y, Wild DJ

Abstract: BACKGROUND: Recently there has been an explosion of new data sources about genes, proteins, genetic variations, chemical compounds, diseases and drugs. Integration of these data sources and the identification of patterns that go across them is of critical interest. Initiatives such as Bio2RDF and LODD have tackled the problem of linking biological data and drug data respectively using RDF. Thus far, the inclusion of chemogenomic and systems chemical biology information that crosses the domains of chemistry and biology has been very limited RESULTS: We have created a single repository called Chem2Bio2RDF by aggregating data from multiple chemogenomics repositories that is cross-linked into Bio2RDF and LODD. We have also created a linked-path generation tool to facilitate SPARQL query generation, and have created extended SPARQL functions to address specific chemical/biological search needs. We demonstrate the utility of Chem2Bio2RDF in investigating polypharmacology, identification of potential multiple pathway inhibitors, and the association of pathways with adverse drug reactions. CONCLUSIONS: We have created a new semantic systems chemical biology resource, and have demonstrated its potential usefulness in specific examples of polypharmacology, multiple pathway inhibition and adverse drug reaction--pathway mapping. We have also demonstrated the usefulness of extending SPARQL with cheminformatics and bioinformatics functionality.
Published in April 2010
READ PUBLICATION →

Characterization of the binding of angiotensin II receptor blockers to human serum albumin using docking and molecular dynamics simulation.

Authors: Li J, Zhu X, Yang C, Shi R

Abstract: Human serum albumin (HSA), the most abundant protein found in blood plasma, transports many drugs and ligands in the circulatory system. The drug binding ability of HSA strongly influences free drug concentrations in plasma, and is directly related to the effectiveness of clinical therapy. In current work, binding of HSA to angiotensin II receptor blockers (ARBs) are investigated using docking and molecular dynamics (MD) simulations. Docking results demonstrate that the main HSA-ARB binding site is subdomain IIIA of HSA. Simulation results reveal clearly how HSA binds with valsartan and telmisartan. Interestingly, electrostatic interactions appear to be more important than hydrophobic interactions in stabilizing binding of valsartan to HSA, and vice versa for HSA-telmisartan. The molecular distance between HSA Trp214 (donor) and the drug (acceptor) can be measured by fluorescence resonance energy transfer (FRET) in experimental studies. The average distances between Trp-214 and ARBs are estimated here based on our MD simulations, which could be valuable to future FRET studies. This work will be useful in the design of new ARB drugs with desired HSA binding affinity.
Published in April 2010
READ PUBLICATION →

Pharmacogenomics and bioinformatics: PharmGKB.

Authors: Thorn CF, Klein TE, Altman RB

Abstract: The NIH initiated the PharmGKB in April 2000. The primary mission was to create a repository of primary data, tools to track associations between genes and drugs, and to catalog the location and frequency of genetic variations known to impact drug response. Over the past 10 years, new technologies have shifted research from candidate gene pharmacogenetics to phenotype-based pharmacogenomics with a consequent explosion of data. PharmGKB has refocused on curating knowledge rather than housing primary genotype and phenotype data, and now, captures more complex relationships between genes, variants, drugs, diseases and pathways. Going forward, the challenges are to provide the tools and knowledge to plan and interpret genome-wide pharmacogenomics studies, predict gene-drug relationships based on shared mechanisms and support data-sharing consortia investigating clinical applications of pharmacogenomics.
Published in April 2010
READ PUBLICATION →

Potential drug-like inhibitors of Group 1 influenza neuraminidase identified through computer-aided drug design.

Authors: Durrant JD, McCammon JA

Abstract: Pandemic (H1N1) influenza poses an imminent threat. Nations have stockpiled inhibitors of the influenza protein neuraminidase in hopes of protecting their citizens, but drug-resistant strains have already emerged, and novel therapeutics are urgently needed. In the current work, the computer program AutoGrow is used to generate novel predicted neuraminidase inhibitors. Given the great flexibility of the neuraminidase active site, protein dynamics are also incorporated into the computer-aided drug-design process. Several potential inhibitors are identified that are predicted to bind to neuraminidase better than currently approved drugs.