Publications Search
Explore how scientists all over the world use DrugBank in their research.
Published on February 4, 2010
READ PUBLICATION →

Dynamism in gene expression across multiple studies.

Authors: Morgan AA, Dudley JT, Deshpande T, Butte AJ

Abstract: In this study we develop methods of examining gene expression dynamics, how and when genes change expression, and demonstrate their application in a meta-analysis involving over 29,000 microarrays. By defining measures across many experimental conditions, we have a new way of characterizing dynamics, complementary to measures looking at changes in absolute variation or breadth of tissues showing expression. We show conservation in overall patterns of dynamism across three species (human, mouse, and rat) and show associations with known disease-related genes. We discuss the enriched functional properties of the sets of genes showing different patterns of dynamics and show that the differences in expression dynamics is associated with the variety of different transcription factor regulatory sites. These results can influence thinking about the selection of genes for microarray design and the analysis of measurements of mRNA expression variation in a global context of expression dynamics across many conditions, as genes that are rarely differentially expressed between experimental conditions may be the subject of increased scrutiny when they significantly vary in expression between experimental subsets.
Published in January 2010
READ PUBLICATION →

Recipes for the selection of experimental protein conformations for virtual screening.

Authors: Rueda M, Bottegoni G, Abagyan R

Abstract: The use of multiple X-ray protein structures has been reported to be an efficient alternative for the representation of the binding pocket flexibility needed for accurate small molecules docking. However, the docking performance of the individual single conformations varies widely, and adding certain conformations to an ensemble is even counterproductive. Here we used a very large and diverse benchmark of 1068 X-ray protein conformations of 99 therapeutically relevant proteins, first, to compare the performance of the ensemble and single-conformation docking and, second, to find the properties of the best-performing conformers that can be used to select a smaller set of conformers for ensemble docking. The conformer selection has been validated through retrospective virtual screening experiments aimed at separating known ligand binders from decoys. We found that the conformers cocrystallized with the largest ligands displayed high selectivity for binders, and when combined in ensembles they consistently provided better results than randomly chosen protein conformations. The use of ensembles encompassing between 3 and 5 experimental conformations consistently improved the docking accuracy and binders vs decoys separation.
Published in January 2010
READ PUBLICATION →

T3DB: a comprehensively annotated database of common toxins and their targets.

Authors: Lim E, Pon A, Djoumbou Y, Knox C, Shrivastava S, Guo AC, Neveu V, Wishart DS

Abstract: In an effort to capture meaningful biological, chemical and mechanistic information about clinically relevant, commonly encountered or important toxins, we have developed the Toxin and Toxin-Target Database (T3DB). The T3DB is a unique bioinformatics resource that compiles comprehensive information about common or ubiquitous toxins and their toxin-targets into a single electronic repository. The database currently contains over 2900 small molecule and peptide toxins, 1300 toxin-targets and more than 33,000 toxin-target associations. Each T3DB record (ToxCard) contains over 80 data fields providing detailed information on chemical properties and descriptors, toxicity values, protein and gene sequences (for both targets and toxins), molecular and cellular interaction data, toxicological data, mechanistic information and references. This information has been manually extracted and manually verified from numerous sources, including other electronic databases, government documents, textbooks and scientific journals. A key focus of the T3DB is on providing 'depth' over 'breadth' with detailed descriptions, mechanisms of action, and information on toxins and toxin-targets. T3DB is fully searchable and supports extensive text, sequence, chemical structure and relational query searches, similar to those found in the Human Metabolome Database (HMDB) and DrugBank. Potential applications of the T3DB include clinical metabolomics, toxin target prediction, toxicity prediction and toxicology education. The T3DB is available online at http://www.t3db.org.
Published in January 2010
READ PUBLICATION →

SMPDB: The Small Molecule Pathway Database.

Authors: Frolkis A, Knox C, Lim E, Jewison T, Law V, Hau DD, Liu P, Gautam B, Ly S, Guo AC, Xia J, Liang Y, Shrivastava S, Wishart DS

Abstract: The Small Molecule Pathway Database (SMPDB) is an interactive, visual database containing more than 350 small-molecule pathways found in humans. More than 2/3 of these pathways (>280) are not found in any other pathway database. SMPDB is designed specifically to support pathway elucidation and pathway discovery in clinical metabolomics, transcriptomics, proteomics and systems biology. SMPDB provides exquisitely detailed, hyperlinked diagrams of human metabolic pathways, metabolic disease pathways, metabolite signaling pathways and drug-action pathways. All SMPDB pathways include information on the relevant organs, organelles, subcellular compartments, protein cofactors, protein locations, metabolite locations, chemical structures and protein quaternary structures. Each small molecule is hyperlinked to detailed descriptions contained in the Human Metabolome Database (HMDB) or DrugBank and each protein or enzyme complex is hyperlinked to UniProt. All SMPDB pathways are accompanied with detailed descriptions, providing an overview of the pathway, condition or processes depicted in each diagram. The database is easily browsed and supports full text searching. Users may query SMPDB with lists of metabolite names, drug names, genes/protein names, SwissProt IDs, GenBank IDs, Affymetrix IDs or Agilent microarray IDs. These queries will produce lists of matching pathways and highlight the matching molecules on each of the pathway diagrams. Gene, metabolite and protein concentration data can also be visualized through SMPDB's mapping interface. All of SMPDB's images, image maps, descriptions and tables are downloadable. SMPDB is available at: http://www.smpdb.ca.
Published in January 2010
READ PUBLICATION →

STITCH 2: an interaction network database for small molecules and proteins.

Authors: Kuhn M, Szklarczyk D, Franceschini A, Campillos M, von Mering C, Jensen LJ, Beyer A, Bork P

Abstract: Over the last years, the publicly available knowledge on interactions between small molecules and proteins has been steadily increasing. To create a network of interactions, STITCH aims to integrate the data dispersed over the literature and various databases of biological pathways, drug-target relationships and binding affinities. In STITCH 2, the number of relevant interactions is increased by incorporation of BindingDB, PharmGKB and the Comparative Toxicogenomics Database. The resulting network can be explored interactively or used as the basis for large-scale analyses. To facilitate links to other chemical databases, we adopt InChIKeys that allow identification of chemicals with a short, checksum-like string. STITCH 2.0 connects proteins from 630 organisms to over 74,000 different chemicals, including 2200 drugs. STITCH can be accessed at http://stitch.embl.de/.
Published in January 2010
READ PUBLICATION →

BioDrugScreen: a computational drug design resource for ranking molecules docked to the human proteome.

Authors: Li L, Bum-Erdene K, Baenziger PH, Rosen JJ, Hemmert JR, Nellis JA, Pierce ME, Meroueh SO

Abstract: BioDrugScreen is a resource for ranking molecules docked against a large number of targets in the human proteome. Nearly 1600 molecules from the freely available NCI diversity set were docked onto 1926 cavities identified on 1589 human targets resulting in >3 million receptor-ligand complexes requiring >200,000 cpu-hours on the TeraGrid. The targets in BioDrugScreen originated from Human Cancer Protein Interaction Network, which we have updated, as well as the Human Druggable Proteome, which we have created for the purpose of this effort. This makes the BioDrugScreen resource highly valuable in drug discovery. The receptor-ligand complexes within the database can be ranked using standard and well-established scoring functions like AutoDock, DockScore, ChemScore, X-Score, GoldScore, DFIRE and PMF. In addition, we have scored the complexes with more intensive GBSA and PBSA approaches requiring an additional 120,000 cpu-hours on the TeraGrid. We constructed a simple interface to enable users to view top-ranking molecules and access purchasing and other information for further experimental exploration.
Published on January 21, 2010
READ PUBLICATION →

DIGA--a database of improved gene annotation for phytopathogens.

Authors: Gao N, Chen LL, Ji HF, Wang W, Chang JW, Gao B, Zhang L, Zhang SC, Zhang HY

Abstract: BACKGROUND: Bacterial plant pathogens are very harmful to their host plants, which can cause devastating agricultural losses in the world. With the development of microbial genome sequencing, many strains of phytopathogens have been sequenced. However, some misannotations exist in these phytopathogen genomes. Our objective is to improve these annotations and store them in a central database DIGAP. DESCRIPTION: DIGAP includes the following improved information on phytopathogen genomes. (i) All the 'hypothetical proteins' were checked, and non-coding ORFs recognized by the Z curve method were removed. (ii) The translation initiation sites (TISs) of 20% approximately 25% of all the protein-coding genes have been corrected based on the NCBI RefSeq, ProTISA database and an ab initio program, GS-Finder. (iii) Potential functions of about 10% 'hypothetical proteins' have been predicted using sequence alignment tools. (iv) Two theoretical gene expression indices, the codon adaptation index (CAI) and the E(g) index, were calculated to predict the gene expression levels. (v) Potential agricultural bactericide targets and their homology-modeled 3D structures are provided in the database, which is of significance for agricultural antibiotic discovery. CONCLUSION: The results in DIGAP provide useful information for understanding the pathogenetic mechanisms of phytopathogens and for finding agricultural bactericides. DIGAP is freely available at http://ibi.hzau.edu.cn/digap/.
Published in 2009
READ PUBLICATION →

A kernel for open source drug discovery in tropical diseases.

Authors: Orti L, Carbajo RJ, Pieper U, Eswar N, Maurer SM, Rai AK, Taylor G, Todd MH, Pineda-Lucena A, Sali A, Marti-Renom MA

Abstract: BACKGROUND: Conventional patent-based drug development incentives work badly for the developing world, where commercial markets are usually small to non-existent. For this reason, the past decade has seen extensive experimentation with alternative R&D institutions ranging from private-public partnerships to development prizes. Despite extensive discussion, however, one of the most promising avenues-open source drug discovery-has remained elusive. We argue that the stumbling block has been the absence of a critical mass of preexisting work that volunteers can improve through a series of granular contributions. Historically, open source software collaborations have almost never succeeded without such "kernels". METHODOLOGY/PRINCIPAL FINDINGS: HERE, WE USE A COMPUTATIONAL PIPELINE FOR: (i) comparative structure modeling of target proteins, (ii) predicting the localization of ligand binding sites on their surfaces, and (iii) assessing the similarity of the predicted ligands to known drugs. Our kernel currently contains 143 and 297 protein targets from ten pathogen genomes that are predicted to bind a known drug or a molecule similar to a known drug, respectively. The kernel provides a source of potential drug targets and drug candidates around which an online open source community can nucleate. Using NMR spectroscopy, we have experimentally tested our predictions for two of these targets, confirming one and invalidating the other. CONCLUSIONS/SIGNIFICANCE: The TDI kernel, which is being offered under the Creative Commons attribution share-alike license for free and unrestricted use, can be accessed on the World Wide Web at http://www.tropicaldisease.org. We hope that the kernel will facilitate collaborative efforts towards the discovery of new drugs against parasites that cause tropical diseases.
Published in December 2009
READ PUBLICATION →

Pharmacophore-based virtual screening versus docking-based virtual screening: a benchmark comparison against eight targets.

Authors: Chen Z, Li HL, Zhang QJ, Bao XG, Yu KQ, Luo XM, Zhu WL, Jiang HL

Abstract: AIM: This study was conducted to compare the efficiencies of two virtual screening approaches, pharmacophore-based virtual screening (PBVS) and docking-based virtual screening (DBVS) methods. METHODS: All virtual screens were performed on two data sets of small molecules with both actives and decoys against eight structurally diverse protein targets, namely angiotensin converting enzyme (ACE), acetylcholinesterase (AChE), androgen receptor (AR), D-alanyl-D-alanine carboxypeptidase (DacA), dihydrofolate reductase (DHFR), estrogen receptors alpha (ERalpha), HIV-1 protease (HIV-pr), and thymidine kinase (TK). Each pharmacophore model was constructed based on several X-ray structures of protein-ligand complexes. Virtual screens were performed using four screening standards, the program Catalyst for PBVS and three docking programs (DOCK, GOLD and Glide) for DBVS. RESULTS: Of the sixteen sets of virtual screens (one target versus two testing databases), the enrichment factors of fourteen cases using the PBVS method were higher than those using DBVS methods. The average hit rates over the eight targets at 2% and 5% of the highest ranks of the entire databases for PBVS are much higher than those for DBVS. CONCLUSION: The PBVS method outperformed DBVS methods in retrieving actives from the databases in our tested targets, and is a powerful method in drug discovery.
Published in 2009
READ PUBLICATION →

A comparative chemogenomics strategy to predict potential drug targets in the metazoan pathogen, Schistosoma mansoni.

Authors: Caffrey CR, Rohwer A, Oellien F, Marhofer RJ, Braschi S, Oliveira G, McKerrow JH, Selzer PM

Abstract: Schistosomiasis is a prevalent and chronic helmintic disease in tropical regions. Treatment and control relies on chemotherapy with just one drug, praziquantel and this reliance is of concern should clinically relevant drug resistance emerge and spread. Therefore, to identify potential target proteins for new avenues of drug discovery we have taken a comparative chemogenomics approach utilizing the putative proteome of Schistosoma mansoni compared to the proteomes of two model organisms, the nematode, Caenorhabditis elegans and the fruitfly, Drosophila melanogaster. Using the genome comparison software Genlight, two separate in silico workflows were implemented to derive a set of parasite proteins for which gene disruption of the orthologs in both the model organisms yielded deleterious phenotypes (e.g., lethal, impairment of motility), i.e., are essential genes/proteins. Of the 67 and 68 sequences generated for each workflow, 63 were identical in both sets, leading to a final set of 72 parasite proteins. All but one of these were expressed in the relevant developmental stages of the parasite infecting humans. Subsequent in depth manual curation of the combined workflow output revealed 57 candidate proteins. Scrutiny of these for 'druggable' protein homologs in the literature identified 35 S. mansoni sequences, 18 of which were homologous to proteins with 3D structures including co-crystallized ligands that will allow further structure-based drug design studies. The comparative chemogenomics strategy presented generates a tractable set of S. mansoni proteins for experimental validation as drug targets against this insidious human pathogen.